A new decision model for economic evaluation of novel therapies for HCV
DOI:
https://doi.org/10.7175/fe.v15i3.945Keywords:
WEF model, Economic evaluation, HCVAbstract
In 2014, the European Medicines Agency (EMA) has given the license to two new direct-acting antiviral: sofosbuvir and simeprevir. The evidence provided by the studies, reported a high rate of SVR even in patients with decompensated cirrhosis. This and other innovative elements are potentially adept at changing the entire natural course of HCV. However, the dramatic prevalence rates of HCV observed in Italy, and the high prices that are expected to be required by the pharmaceutical industry, raises some critical issues about how to regulate access to such drugs. The objective of this article is to present a new decision model for the evaluation of novel therapies for HCV. This model is intended to provide a tool for the decision-maker that seeks to address the main issues related to the introduction of HCV new treatments. The model that we have structured follows the classic Bayesian approach, using data from reference literature for staging the action of treatments depending on the level of fibrosis (F0, F1, F2, F3, F4). The model is designed to consider patients with all genotypes and allows to make comparisons between innovative and traditional therapies (dual, triple, IFN free, PI combinations, etc.), for both experienced and naïve patients. In addition, the model is used to simulate mixed cohorts of patients, representing a population with HCV with different levels of fibrosis and different genotypes. To show the potential of the model, we created some simple scenarios assuming different levels of SVR and pricing. The results of our model show that, even assuming an SVR rate of 100%, the administration of new treatments for HCV subjects F1 / 2 has an incremental cost-effectiveness ratio not sustainable. In contrast, for the subjects F3 and F4, low incremental SVR rates and an incremental cost of the innovative therapy of € 40,000 would be cost effective. The added value of this model is its versatility and applicability to diverse assessment needs. In addition, the model offers an opportunity for reflection even to the industry, which in the years to come will have to develop strategies for entering the market and offer sustainable prices for decision-makers and at the same time remunerate the investment in research and development consistently with the expectations of the shareholders.
References
Cornberg M, Razavi HA, Alberti A et al. A systematic review of hepatitis Cvirus epidemiology in Europe, Canada and Israel. Liver Int 2011; 31 Suppl 2: 30-60; http://dx.doi.org/10.1111/j.1478-3231.2011.02539.x
Rantala M, van de Laar MJ. Surveillance and epidemiology of hepatitis B and C in Europe - a review. Euro Surveill 2008; 13; pii: 18880. Review. PubMed PMID: 18761967.
Matera G, Lamberti A, Quirino A, et al. Changes in the prevalence of hepatitis C virus (HCV) genotype 4 in Calabria, Southern Italy. Diagn Microbiol Infect Dis 2002; 42: 169-73; http://dx.doi.org/10.1016/S0732-8893(01)00350-9
European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatitis C virus infection. J Hepatol 2011; 55: 245-64; http://dx.doi.org/10.1016/j.jhep.2011.02.023
Stroffolini T, Rapicetta M, Di Stefano R. Hepatitis C virus clearance and gender. Gut 2007; 56: 884
Ansaldi F, Bruzzone B, Salmaso S, et al. Different seroprevalence and molecular epidemiology patterns of hepatitis C virus infection in Italy. J Med Virol 2005; 76: 327-32; http://dx.doi.org/10.1002/jmv.20376
Bacon BR, Gordon SC, Lawitz E, et al. HCV RESPOND-2 final results: high sustained virologic response among genotype1 previous nonresponders and relapsers to peginterferon/ribavirin when retreated with boceprevir plus PegIntron/ribavirin. Hepatology 2010; 52: 430A
Jacobson IM, McHutchison JG, Dusheiko et al. Telaprevir in combination with peginterferon andibavirin in genotype 1 HCV treatment-naive patients: final results of Phase 3 ADVANCE study. Hepatology 2010; 52: 427A
Poordad F, McCone J, Bacon BR, et al. Boceprevir (BOC) combined with peginterferon alfa-2b/ribavirin (P/R) for treatment-naive patients with hepatitis C (HCV) genotype 1: SPRINT-2 final results. Hepatology 2010; 52: 402A
Sherman KE, Flamm SL, Afdhal NH, et al. Telaprevir in combination with peginterferon alfa2b and ribavirin for 24 or 48 weeks in treatment-naive genotype 1 HCV patients who achieved an extended rapid viral response: final results of Phase 3 ILLUMINATE study. Hepatology 2010; 52: 401A
YK Jung, JH Kim. Efficacy of sofosbuvir combination therapy for hepatitis C genotype 2 or 3 that are difficult to manage with standard treatment. Korean J Gastroenterol 2013; 62: 185-7; http://dx.doi.org/10.4166/kjg.2013.62.3.185
Lawitz E, Gane EJ. Sofosbuvir for previously untreated chronic hepatitis C infection. N Engl J Med 2013; 369: 678-9; http://dx.doi.org/10.1056/NEJMc1307641
Zeng QL, Zhang JY, Zhang Z, et al. Sofosbuvir and ABT-450: terminator of hepatitis C virus? World J Gastroenterol 2013; 19: 3199-206; http://dx.doi.org/10.3748/wjg.v19.i21.3199
Lawitz E, Mangia A, Wyles D, et al. Sofosbuvir for previously untreated chronic hepatitis C infection. N Engl J Med 2013; 368: 1878-87; http://dx.doi.org/10.1056/NEJMoa1214853
Jacobson IM1, Gordon SC, Kowdley KV, et al. Sofosbuvir for hepatitis C genotype 2 or 3 in patients without treatment options. N Engl J Med 2013; 368: 1867-77; http://dx.doi.org/10.1056/NEJMoa1214854
Sonnenberg FA, Beck JR. Markov models in medical decision making: a practical guide. Med Decis Making 1993; 13: 322-38; http://dx.doi.org/10.1177/0272989X9301300409
Cammà C, Petta S, Enea M, et al. Cost-effectiveness of boceprevir or telaprevir for untreated patients with genotype 1 chronic hepatitis C. Hepatology 2012; 56: 850-60; http://dx.doi.org/10.1002/hep.25734
Blazquez Perez A, San Miguel R, Mar J. Cost-effectiveness analysis of triple therapy with protease inhibitors in treatment-naive hepatitis C patients. PharmacoEconomics 2013; 31: 919-31; http://dx.doi.org/10.1007/s40273-013-0080-3
Liu S, Cipriano LE, Holodniy M, et al. New protease inhibitors for the treatment of chronic hepatitis C: a cost-effectiveness analysis. Ann Intern Med 2012; 156: 279-90; http://dx.doi.org/10.7326/0003-4819-156-4-201202210-00005
Briggs AH, Goeree R, Blackhouse G, et al. Probabilistic analysis of cost-effectiveness models: choosing between treatment strategies for gastroesophageal reflux disease. Med Decis Making 2002; 22: 290-308; http://dx.doi.org/10.1177/027298902400448867
Claxton K, Neumann PJ, Araki S, et al. Bayesian value-of-information analysis: an application to a policy model of Alzheimer’s disease. Int J Technol Asses Health Care 2001; 17: 38-55; http://dx.doi.org/10.1017/S0266462301104058
Ruggeri M, Coretti S, Gasbarrini A, et al. Economic assessment of an anti HCV screening program in Italy. Value in Health 2013; 16: 965-72; http://dx.doi.org/10.1016/j.jval.2013.07.005
Townsend R, McEwan P, Kim R, et al. Structural frameworks and key model parameters in cost-effectiveness analyses for current and future treatments of chronic hepatitis C. Value Health 2011; 14: 1068-77; http://dx.doi.org/10.1016/j.jval.2011.06.006
Wright M, Grieve R, Roberts J, et al.; UK Mild Hepatitis C Trial Investigators. Health benefits of antiviral therapy for mild chronic hepatitis C: randomised controlled trial and economic evaluation. Health Technol Assess 2006; 10: 1-113
Dienstag JL, Ghany MG, Morgan TR, et al.; HALT-C Trial Group. A prospective study of the rate of progression in compensated, histologically advanced chronic hepatitis C. Hepatology 2011; 54: 396-405; http://dx.doi.org/10.1002/hep.24370
ISPOR. Country specific pharmacoeconomic guidelines. Dublin: ISPOR; 2006
Agenzia Italiana del Farmaco: http://farmaco.agenziafarmaco.it/index.php
Ricognizione e primo aggiornamento delle tariffe massime per la remunerazione delle prestazioni sanitarie. Gazzetta Ufficiale n. 289 del 13 dicembre 2006
Ministero della Salute. Tariffari nazionali delle prestazioni del Ssn.
Nakamura J, Toyabe SI, Aoyagi Y, et al. Economic impact of extended treatment with peginterferon alpha-2a and ribavirin for slow hepatitis C virologic responders. J Viral Hepat 2008; 15: 293-9
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. The Publication Agreement can be downloaded here, and should be signed by the Authors and sent to the Publisher when the article has been accepted for publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).
- Authors are permitted to post their work online after publication (the article must link to publisher version, in html format)