Clinical management of carbamazepine intoxication during anti-tubercular treatment: a case report

Clinical management of carbamazepine intoxication during anti-tubercular treatment: a case report

Authors

  • Massimo Calderazzo Department of Infectious Disease, ASP LameziaTerme, Catanzaro, Italy
  • Pierandrea Rende Department of Health Science, University of Catanzaro and Operative Unit of Clinical Pharmacology and Pharmacovigilance, Azienda Ospedaliera Mater Domini, Catanzaro, Italy
  • Paolo Gambardella Department of Infectious Disease, ASP LameziaTerme, Catanzaro, Italy
  • Manuela Colosimo Department of Service, Microbiology Unit, Central Lab, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Italy
  • Giovambattista De Sarro Department of Health Science, University of Catanzaro and Operative Unit of Clinical Pharmacology and Pharmacovigilance, Azienda Ospedaliera Mater Domini, Catanzaro, Italy
  • Luca Gallelli Department of Health Science, University of Catanzaro and Operative Unit of Clinical Pharmacology and Pharmacovigilance, Azienda Ospedaliera Mater Domini, Catanzaro, Italy

DOI:

https://doi.org/10.7175/cmi.v9i2.1175

Keywords:

Carbamazepine, Isoniazid, Rifampicin, Drug-drug interactions, Therapeutic drug monitoring.

Abstract

We describe a 67-year-old man with medical history of focal post-stroke seizure and type 2 diabetes mellitus treated with carbamazepine, clobazam, gliclazide, insulin glargine, and omeprazole we visited for the onset in the last 7 days of asthenia, cough with mucus, breathing difficulty, chest pain, and weight loss. After clinical and laboratory tests, pulmonary tuberculosis was diagnosed, and a treatment with isoniazid, ethambutol, pyrazinamide rifampicin, and pyridoxine was started. Therapeutic drug monitoring of tuberculosis treatment documented that all drugs were in normal therapeutic range. Four days after the beginning of the treatment, we documented the improvement of fever, and three days later the patient showed sleepiness, visual disorder and asthenia. Clinical and pharmacological evaluation suggested a carbamazepine toxicity probably related to a drug interaction (Drug Interaction Probability Scale score = 6). The impossibility to switch carbamazepine for another antiepileptic drug, due to a resistant form of seizure, induced the discontinuation of tuberculosis treatment, resulting in the normalization of serum carbamazepine levels in one day (10 µg/ml) and in the worsening of fever, requiring a new clinical and pharmacological evaluation. The titration dosage of carbamazepine and its therapeutic drug monitoring allowed to continue the treatment with both antitubercular drugs and carbamazepine, without the development of adverse drug reactions. To date, tuberculosis treatment was stopped and clinical evaluation, radiology and microbiology assays documented the absence of tubercular infection and no seizures appeared (carbamazepine dosage 800 mg/bid; serum levels 9.5 µg/ml).

References

Palleria C, Di Paolo A, Giofrè C, et al. Pharmacokinetic drug-drug interaction and their implication in clinical management. J Res Med Sci 2013; 18: 601-10

Fiß T, Meinke-Franze C, van den Berg N, et al. Effects of a three party healthcare network on the incidence levels of drug related problems. Int J Clin Pharm 2013; 35: 763-71; http://dx.doi.org/10.1007/s11096-013-9804-x

Alisjahbana B, Sahiratmadja E, Nelwan EJ, et al. The effect of type 2 diabetes mellitus on the presentation and treatment response of pulmonary tuberculosis. Clin Infect Dis 2007; 45: 428-35; http://dx.doi.org/10.1086/519841

Heysell SK, Moore JL, Keller SJ, et al. Therapeutic drug monitoring for slow response to tuberculosis treatment in a state control program, Virginia, USA. Emerg Infect Dis 2010; 16: 1546-53; http://dx.doi.org/10.3201/eid1610.100374

Campos-Franco J, González-Quintela A, Alende-Sixto MR. Isoniazid-induced hyperacute liver failure in a young patient receiving carbamazepine. Eur J Intern Med 2004; 15: 396-7; http://dx.doi.org/10.1016/j.ejim.2004.07.005

Johannessen SI, Landmark CJ. Antiepileptic drug interactions - principles and clinical implications. Curr Neuropharmacol 2010; 8: 254-67; http://dx.doi.org/10.2174/157015910792246254

Bertilsson L, Tomson T. Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10,11-epoxide. An update. Clin Pharmacokinet 1986; 11: 177-98; http://dx.doi.org/10.2165/00003088-198611030-00001

Desta Z, Soukhova NV, Flockhart DA. Inhibition of cytochrome P450 (CYP450) isoforms by isoniazid: potent inhibition of CYP2C19 and CYP3A. Antimicrob Agents Chemother 2001; 45: 382-92; http://dx.doi.org/10.1128/AAC.45.2.382-392.2001

Lee SY, Jang H, Lee JY, et al. Inhibition of cytochrome P450 by ethambutol in human liver microsomes. Toxicol Lett 2014; 229: 33-40; http://dx.doi.org/10.1016/j.toxlet.2014.06.006

Gareri P, De Fazio P, Gallelli L, et al. Venlafaxine-propafenone interaction resulting in hallucinations and psychomotor agitation. Ann Pharmacother 2008; 42: 434-8; http://dx.doi.org/10.1345/aph.1K405

Siniscalchi A, Gallelli L, Calabrò G, et al. Phenobarbital/Lamotrigine coadministration-induced blood dyscrasia in a patient with epilepsy. Ann Pharmacother 2010; 44: 2031-4; http://dx.doi.org/10.1345/aph.1P335

Downloads

Published

2015-06-30

Issue

Section

Case report
Loading...