Pulmonary Complications in a Patient with Common Variable Hypogammaglobulinemia
DOI:
https://doi.org/10.7175/cmi.v17i1.1521Keywords:
Common variable hypogammaglobulinemia, respiratory failure, pulmonary hypertensionAbstract
Common variable immunodeficiency (CVID) is a rare disorder characterized by primary antibody deficiency leading to hypogammaglobulinemia and increased risk of infections. Pulmonary hypertension (PH) is an unusual complication of CVID and may be associated with chronic hypoxemic respiratory failure.
We described the case of a 47-year-old female patient hospitalized with worsening dyspnea, which had emerged about 10 days before and was associated with productive cough. 26 years before, she was diagnosed with common variable hypogammaglobulinemia, that was treated with intravenous immunoglobulin infusions for at least 20 years. She had suffered from recurrent secondary infections of the respiratory tract with inveterate bronchiectasis, pulmonary hypertension, and chronic respiratory failure.
This case suggests that Internal Medicine wards, due to their global vision of the patient, are well suited to manage subjects with serious, complex, and genetically determined pathologies.
References
Gathmann B, Mahlaoui N; CEREDIH; Gérard L, et al. European Society for Immunodeficiencies Registry Working Party. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J Allergy Clin Immunol 2014; 134: 116-26; https://doi.org/10.1016/j.jaci.2013.12.1077
Sullivan KE, Puck JM, Notarangelo LD, et al. USIDNET: a strategy to build a community of clinical immunologists. J Clin Immunol 2014; 34: 428-35; https://doi.org/10.1016/10.1007/s10875-014-0028-1
Quinti I, Soresina A, Spadaro G, et al. Long-term follow-up and outcome of a large cohort of patients with common variable immunodeficiency. J Clin Immunol 2007; 27: 308-16; https://doi.org/10.1007/s10875-007-9075-1
Thoré P, Jaïs X, Savale L, et al. Pulmonary Hypertension in Patients with Common Variable Immunodeficiency. J Clin Immunol 2021; 41: 1549-62; https://doi.org/10.1007/s10875-021-01064-w
Thoré P, Humbert M, Montani D. Pulmonary hypertension: A rare but severe complication of common variable immunodeficiency. Ann Allergy Asthma Immunol 2021; 127: 512-3; https://doi.org/10.1016/j.anai.2021.06.016
Daniil Z, Karetsi E, Zakynthinos E, et al. Pulmonary arterial hypertension in a patient with common variable immunodeficiency and unilateral bronchiectasis: Successful treatment with iloprost. Eur J Intern Med 2007; 18: 333-5; https://doi.org/10.1016/j.ejim.2006.11.014
Arslan S, Ucar R, Yavsan DM, et al. Common variable immunodeficiency and pulmonary amyloidosis: a case report. J Clin Immunol 2015; 35: 344-7; https://doi.org/10.1007/s10875-015-0151-7
Seidel MG, Kindle G, Gathmann B, et al. The European Society for Immunodeficiencies (ESID) Registry Working Definitions for the Clinical Diagnosis of Inborn Errors of Immunity. J Allergy Clin Immunol Pract 2019; 7: 1763; https://doi.org/10.1016/j.jaip.2019.02.004
Bonilla FA, Barlan I, Chapel H, et al. International Consensus Document (ICON): Common Variable Immunodeficiency Disorders. J Allergy Clin Immunol Pract 2016; 4: 38; https://doi.org/10.1016/j.jaip.2015.07.025
Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019; 53: 1801913; https://doi.org/10.1183/13993003.01913-2018
D’Andrea A, Stanziola A, Di Palma E, et al. Right Ventricular Structure and Function in Idiopathic Pulmonary Fibrosis with or without Pulmonary Hypertension. Echocardiography 2016; 33: 57; https://doi.org/10.1111/echo.12992
Nowak J, Hudzik B, Jastrzȩbski D, et al. Pulmonary hypertension in advanced lung diseases: Echocardiography as an important part of patient evaluation for lung transplantation. Clin Respir J 2018; 12: 930; https://doi.org/10.1111/crj.12608
Stone AC, Machan JT, Mazer J, et al. Echocardiographic evidence of pulmonary hypertension is associated with increased 1-year mortality in patients admitted with chronic obstructive pulmonary disease. Lung 2011; 189: 207; https://doi.org/10.1007/s00408-011-9293-4
Seeger W, Adir Y, Barberà JA, et al. Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol 2013; 62: D109; https://doi.org/10.1016/j.jacc.2013.10.036
Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J 2015; 46: 903-75; https://doi.org/10.1183/13993003.01032-2015
Hamada K, Nagai S, Tanaka S, et al. Significance of pulmonary arterial pressure and diffusion capacity of the lung as prognosticator in patients with idiopathic pulmonary fibrosis. Chest 2007; 131: 650; https://doi.org/10.1378/chest.06-1466
Budev MM, Arroliga AC, Wiedemann HP, et al. Cor pulmonale: an overview. Semin Respir Crit Care Med 2003; 24: 233; https://doi.org/10.1055/s-2003-41105
Kimura M, Taniguchi H, Kondoh Y, et al. Pulmonary hypertension as a prognostic indicator at the initial evaluation in idiopathic pulmonary fibrosis. Respiration 2013; 85: 456; https://doi.org/10.1159/000345221
Rich S. Primary pulmonary hypertension: executive summary. Evian, France. World Health Organization, 1998
Hurdman J, Condliffe R, Elliot CA, et al. Pulmonary hypertension in COPD: results from the ASPIRE registry. Eur Respir J 2013; 41: 1292; https://doi.org/10.1183/09031936.00079512
Oswald-Mammosser M, Weitzenblum E, Quoix E, et al. Prognostic factors in COPD patients receiving long-term oxygen therapy. Importance of pulmonary artery pressure. Chest 1995; 107: 1193; https://doi.org/10.1378/chest.107.5.1193
Weitzenblum E, Schrijen F, Mohan-Kumar T, et al. Variability of the pulmonary vascular response to acute hypoxia in chronic bronchitis. Chest 1988; 94: 772; https://doi.org/10.1378/chest.94.4.772
Snijders D, Fernandez Dominguez B, Calgaro S, et al. Mucociliary clearance techniques for treating non-cystic fibrosis bronchiectasis: Is there evidence? Int J Immunopathol Pharmacol 2015; 28: 150-9; https://doi.org/10.1177/0394632015584724
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution Non-Commercial 4.0 Licence that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. The Publication Agreement can be downloaded here, and should be signed by the Authors and sent to the Publisher when the article has been accepted for publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors are permitted to post their work online after publication (the article must link to publisher version, in html format)